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Why CW complexes?

m Very general class of spaces
m Examples of CW complexes: R", S", CP", RP*®
m Homotopy type of CW complexes: differentiable manifolds
m Not a CW complex: hedgehog space
m Not homotopy equivalent to a CW complex: Hawaiian earring

hedgehog space Hawaiian earring
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Why CW complexes?

m A lot of strong results about CW complexes

Theorem (Whitehead theorem, 1949)

A continuous map between two CW complexes that induces
isomorphisms on all homotopy groups is a homotopy equivalence.

Theorem (Cellular homology)

Let X be a CW complex. Then the cellular and singular homology
of X agree.
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Intuition: What is a CW complex?

m Glue n-cells (i.e. continuous images of n-discs) together along
their boundaries

I o

0-cells 1-cells 2-cells
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Examples: What is a CW complex?

e D O ) — P - o
[ Y

Interval Real line

2-sphere
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Definition: What is a CW complex?

Let X be a Hausdorff space. An (absolute) CW complex on X consists of
a family of indexing sets (/,)nen and a family of continuous maps
(QF: D™ — X)nen,icy, called characteristic maps with the following

properties:

() Q'line(pny * int(D") — Q7 (int(D")) is a homeomorphism for every
neNandiel, Wecall ¢ := Q(int(D")) an (open) n-cell and
el == Q"(D") a closed n-cell.

(i) Two different open cells are disjoint.

(iii) For each n € N and i € I, the cell frontier 0el = Q(0D") is
contained in the union of a finite number of closed cells of a lower
dimension.

(iv) A set AC X is closed if the intersections AN € are closed for all
neNandiel,.

(v) The union of all closed cells is X.
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Lean: What is a CW complex?

class CWComplex.{u} {X : Type u} [TopologicalSpace X] (C : Set X) where

cell (n : N) : Type u
map (n : N) (i : cell n) : PartialEquiv (Fin n » R) X
source_eq (n : N) (i : cell n) : (map n i).source = ball 0 1
continuousOn (n : M) (i : cell n) : ContinuousOn (map n i) (closedBall © 1)
continuousOn_symm (n : IN) (i : cell n) : ContinuousOn (map n i).symm (map n i).target
pairwiseDisjoint"’

(univ : Set (X n, cell n)).PairwiseDisjoint (fun ni » map ni.1 ni.2 '' ball @ 1)
mapsTo' (n : N) (i : cell n) : 3 I : N m, Finset (cell m),

MapsTo (map n i) (sphere @ 1) (U (m<n) (j € I m), mp mj '' closedBall 0 1)
closed" (A : Set X) (hAC : Ac () :

(V n j, IsClosed (Anmap n j '' closedBall © 1)) » IsClosed A
union’ : U (n : N) (j : cell n), map n j "' closedBall © 1 = C
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Intuition: What is a relative CW complex?

A relative CW complex additionally has a base set that the
boundaries can attach to.

@

An example of a relative CW complex
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at is a relative CW complex?

class RelCWComplex.{u} {X : Type u} [TopologicalSpace X] (C : Set X) (D : outParam (Set X)) where

cell (n : N) : Type u
map (n : N) (i : cell n) : PartialEquiv (Fin n » R) X
source_eq (n : N) (i : cell n) : (map n i).source = ball 0 1
continuousOn (n : I0) (i : cell n) : ContinuousOn (map n i) (closedBall © 1)
continuousOn_symm (n : N) (i : cell n) : ContinuousOn (map n i).symm (map n i).target
pairwiseDisjoint"'

(univ : Set (Z n, cell n)).PairwiseDisjoint (fun ni = map ni.1 ni.2 '' ball @ 1)
disjointBase' (n : 1) (i : cell n) : Disjoint (map n i "' ball @ 1) D
mapsTo (n : M) (1 : cell n) : 3 I : M m, Finset (cell m),

MapsTo (map n i) (sphere @ 1) (DU U (m<n) (j €I m), mpmij"'" closedBall 0 1)
closed' (A : Set X) (hAC : A S C) :

((V n j, IsClosed (A nmap n j '' closedBall © 1)) A IsClosed (A n D)) » IsClosed A
isClosedBase : IsClosed D
union' : DU U (n : W) (j : cell n), map n j '' closedBall © 1 = C
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Implementation: general situation

Situation: We have a general and a specific definition where
e the specific definition is a lot more commonly used
e the specific case provides significant simplifications

e the differentiating parameter is an outParam
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Implementation: Issues with naive definition

e Naive approach: define an absolute CW complex as a relative
one with empty base
e Issues with naive approach:

e repeated simplifications
e instances where the base is provably but not definitionally
equal to empty set
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Implementation: Issues with naive definition

e Product of two relative CW complexes (C, @) and (E, @) has type:
RelCWComplex (C x° E) (@ x5 E U C x° 0)
e Product of two absolute CW complexes C and E has type:
CWComplex (C x* E)

e With the naive approach this would be definitionally the same as:

RelCWComplex (C x* E) @
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What has been done in Lean?

By other people (that | am aware of):

o Categorical definition TopCat.RelativeCWComplex by Jiazhen
Xia and Elliot Dean Young and refactored by Joél Riou: in
Mathlib

e Whitehead theorem in model categories by Joél Riou: in
Mathlib

Equivalence of the definitions by Robert Maxton: PRs
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What has been done in Lean?

By us:

o Definition and basic properties (~ 600 LOC): in Mathlib

o Finiteness notions (~ 300 LOC): in Mathlib
Subcomplexes (~ 800 LOC): in Mathlib/PRs
Compactly coherent spaces (~ 200 LOC): in Mathlib/PRs
Product (~ 600 LOC): done
Examples (~ 1000 LOC): needs refactor

e Rest of the Project (~ 3000 LOC)
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Products of CW complexes

Let X and Y be CW complexes. The respective families of
characteristic maps are (Q": D" — X)pen,iel, and
(P D™ = Y)meN,jen-

Theorem

Assume that X x Y is compactly coherent. Then X x Y is a CW
complex with characteristic maps

(QF x PT: D" x D™ — C x E)n meN,icl, jes, and indexing sets
Ki = Uptm=i In X Im.

Theorem

In general, the compact coherentification of X x Y is a CW
complex.
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Compactly coherent spaces

Abbreviation Meaning summary

CG-1 Topology coherent with family of its compact subspaces

CG-2 Topology same as final topology with respect to continuous maps from arbitrary compact Hausdorff spaces
CG-3 Topology coherent with family of its compact Hausdorff subspaces

Definition

Let X be a topological space. We call X compactly coherent if a
set A C X is open iff for all compact sets C C X, the intersection
AN C is openin C.
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Compactly coherent spaces

class CompactlyCoherentSpace (X : Type*) [TopologicalSpace X] : Prop where
isCoherentWith : IsCoherentWith (X := X) {K | IsCompact K}

structure IsCoherentWith (S : Set (Set X))
isOpen_of forall induced (u : Set X) :
(Vv s €5, IsOpen ((1) =" u : Set s)) » IsOpen u

: Prop where
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Summary

CW complexes are an important class of topological spaces
a CW complex is made up of a lot of discs glued together

the product of two CW complexes is in general not a CW
complex

some of the theory of CW complexes is already in mathlib!
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